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Imaging inverse problems

We are interested in an unknown image x⋆ ∈ Rd .

We measure y ∈ Y, related to x⋆ by some mathematical model.

For example, in many imaging problems

y = Ax⋆ +w ,

for some operator A that is poorly conditioned or rank deficient,
and an unknown perturbation or “noise” w .

The recovery of x⋆ from y is usually not well posed. Additional
information is required in order to deliver meaningful solutions.
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Mathematical imaging frameworks

There are three main mathematical and computational frameworks for
inference in imaging inverse problems:

1 Mathematical analysis

2 Bayesian statistics.

3 Machine learning.

These frameworks have complementary strengths and weaknesses.

Our aim is to develop a unifying framework of theory, methods, and
algorithms that inherits the benefits of each approach.
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The Bayesian statistical approach

Model x⋆ as a realisation of a r.v. x on Rd . Use the distribution of x
to regularise the problem and promote expected properties.

The observation y is a realisation of a r.v. (y∣x = x⋆).

Inferences about x⋆ from y are derived from the joint distribution of
(x,y) - specified via the decomposition p(x , y) = p(y ∣x)p(x).
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The Bayesian framework

The decomposition p(x , y) = p(y ∣x)p(x) has two key ingredients:

The likelihood function: the conditional distribution p(y ∣x) that models
the data observation process (forward model).

The prior function: the marginal distribution p(x) = ∫ p(x , y)dy that
models our knowledge about the solution x.

For example, for y = Ax +w , with w ∼ N(0, σ2I), we have

y ∼ N(Ax , σ2I) ,

or equivalently
p(y ∣x) ∝ exp{−∥y −Ax∥22/2σ

2
} .
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Prior distribution

For this tutorial, we assume a prior distribution of the form:

p(x) =
1

Z(θ)
e−θ

⊺ψ(x)1Ω(x) ,

for some statistic ψ ∶ Rd → Rm, θ ∈ Rm, and constraint set Ω ⊂ Rd .

Often ψ and Ω are convex on Rd and p(x) is log-concave.

The normalising constant Z(θ) is given by

Z(θ) = ∫
Ω
e−θ

⊺ψ(x)dx ,

so ∫Ω p(x)dx = 1. This will play a key role in model selection techniques.

The statistic ψ can be assumption-driven (e.g., a sparsity promoting
norm), purely data-driven, or a combination of both.
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Posterior distribution

We base our inferences on the posterior distribution p(x ∣y).

We derive p(x ∣y) from the likelihood p(y ∣x) and the prior p(x) by using

p(x ∣y) =
p(y ∣x)p(x)

p(y)

where p(y) = ∫ p(y ∣x)p(x)dx measures model-fit-to-data.

The conditional p(x ∣y) models our beliefs about x after observing y = y .

In this first tutorial, we consider that p(x ∣y) is log-concave; i.e.,

p(x ∣y) = exp{−ϕ(x)}/∫ exp{−ϕ(x)}dx ,

where ϕ(x) is a convex function on Rd .
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Illustrative example: astronomical image reconstruction

Recover x ∈ Rd from low-dimensional degraded observation

y =MFx +w ,

where F is the continuous Fourier transform, M ∈ Cm×d is a measurement
operator, Ψ is a wavelet basis, and w ∼ N(0, σ2Im). We use the model

p(x ∣y) ∝ exp (−∥y −MFx∥2/2σ2 − θ∥Ψx∥1)1Rn
+(x). (1)

x⋆
y ∼ N(MFx⋆, σ2I)

y

Figure: Radio-interferometric measurements of the W28 supernova.
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Maximum-a-posteriori (MAP) estimation

The predominant Bayesian approach in imaging is MAP estimation

x̂MAP = argmax
x∈Rd

p(x ∣y),

= argmin
x∈Rd

ϕ(x).
(2)

When p(x ∣y) is log-concave, x̂MAP is a convex optimisation problem. We
are usually able to solve convex problems very efficiently (see Chambolle
and Pock (2016))..

See, e.g., Chambolle and Pock (2016) for more details.
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MAP estimation by proximal optimisation

To compute x̂MAP we could use a proximal splitting algorithm. Let

f (x) = ∥y −MFx∥2/2σ2 , and g(x) = θ∥Ψx∥1 + − log1Rn
+(x) ,

where f and g are l.s.c. convex on Rd , and f is Lf -Lipschitz differentiable.

For example, we could use a proximal gradient iteration

xm+1 = prox
L−1f
g {x

m
+ L−1f ∇f (x

m
)},

converges to x̂MAP at rate O(1/m), with poss. acceleration to O(1/m2).

Definition For λ > 0, the λ-proximal operator of a convex l.s.c. function g
is defined as (Moreau, 1962)

proxλg(x) ≜ argmin
u∈RN

g(u) +
1

2λ
∣∣u − x ∣∣2.
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Illustrative example: astronomical image reconstruction

Recover x ∈ Rd from low-dimensional degraded observation

y =MFx +w ,

where F is the continuous Fourier transform, M ∈ Cm×d is a measurement
operator, Ψ is a wavelet basis, and w ∼ N(0, σ2Im). We use the model

p(x ∣y) ∝ exp (−∥y −MFx∥2/2σ2 − θ∥Ψx∥1)1Rn
+(x). (3)

y x̂MAP

Figure: Radio-interferometric image reconstruction of the W28 supernova.
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Summary

Modern convex optimisation can compute x̂ very efficiently...

With parallelised and distributed algorithms...

With theoretical convergence guarantees..

And GPU implementations...

With data-driven flavours based on input convex neural networks..

Also non-convex extensions...

So the problem is quite solved, right?

M. Pereyra Bayesian imaging methods 14 / 83



Not really...
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Elephant 1: what is the uncertainty about x̂?

∣y ∣
x̂MAP

How confident are we about all these structures in the image?

What is the error in their intensity, position, spectral properties?

Using x̂MAP to derive physical quantities? what error bars should we put...
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Illustrative example: magnetic resonance imaging

We use very similar techniques to produce magnetic resonance images...

x̂ x̂ (zoom)

Figure: Magnetic resonance imaging of brain lession.

How can we quantify our uncertainty about the brain lesion in the image?
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Illustrative example: magnetic resonance imaging

What about this other solution to the problem, with no lesion?

x̂ ′ x̂ ′ (zoom)

Figure: Magnetic resonance imaging of brain lession.

Do we have any arguments to reject this solution?
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Elephant 1: what is the uncertainty about x̂?

Another example related to sparse super-resolution in live-cell microscopy

y x̂MAP x̂MAP (zoom)

Figure: Live-cell microscopy data (Zhu et al., 2012).

The image is sharpened to enhance molecule position measurements, but
what is the precision of the procedure?
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Elephant 2: multiple competing models

Two imaging scientists often formulate different models/cost functions to
recover x

x̂1 = argmin
x∈Rd

∥y −A1x∥
2
2 + θ1h1(x),

x̂2 = argmin
x∈Rd

∥y −A2x∥
2
2 + θ2h2(x),

(4)

How can we compare them without ground truth available?

Can we use several models simultaneously?
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Elephant 3: partially unknown models

Some of the model parameters might also be unknown; e.g., θ ∈ R+ in

x̂1 = argmin
x∈Rd

∥y −A1x∥
2
2 + θh1(x). (5)

Then θ parametrises a class of models for y → x .

How can we select θ without using ground truth?

Could we use all models simultaneously?
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Bayesian decision theory

Given the following elements defining a decision problem:

1 Decision space ∆

2 Loss function L(δ, x) ∶∆ ×Rd → R quantifying the loss (or profit)
related to taking action δ ∈∆ when the truth is x ∈ Rd .

3 A model p(x) representing probabilities for x .

What is the optimal decision δ∗ ∈∆ when x is unknown?
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Bayesian decision theory

Given the following elements defining a decision problem:

1 Decision space ∆

2 Loss function L(δ, x) ∶∆ ×Rd → R quantifying the loss (or profit)
related to taking action δ ∈∆ when the truth is x ∈ Rd .

3 A probability model p(x) representing knowledge about x .

According to Bayesian decision theory (Robert, 2001), the optimal decision
under uncertainty is

δ∗ = argmin
δ∈∆

E{L(δ,x)∣y} = argmin
δ∈∆

∫ L(δ, x)p(x)dx .
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Bayesian point estimators

Bayesian point estimators arise from the decision ”what point x̂ ∈ Rd

summarises x ∣y best?”. The optimal decision under uncertainty is

x̂L = argmin
u∈Rd

E{L(u,x)∣y} = argmin
u∈Rd

∫ L(u, x)p(x ∣y)dx

where the loss L(u, x) measures the “dissimilarity” between u and x .

General desiderata:

1 L(u, x) ≥ 0, ∀u, x ∈ Rd ,

2 L(u, x) = 0 ⇐⇒ u = x ,

3 L strictly convex w.r.t. its first argument (for estimator uniqueness).
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Bayesian point estimators - MMSE estimation

Example: the squared Euclidean distance L(u, x) = ∥u − x∥2 defines the
so-called minimum mean squared error estimator.

x̂MMSE = argmin
u∈Rd

∫ ∥u − x∥
2
2 p(x ∣y)dx .

By differentiating w.r.t. to u and equating to zero we obtain that

∫ (x̂MMSE − x)p(x ∣y)dx = 0 Ô⇒ x̂MMSE ∫ p(x ∣y)dx = ∫ xp(x ∣y)dx ,

hence x̂MMSE = E{x∣y} (recall that ∫ p(x ∣y)dx = 1).
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What about the MAP estimator?

Assume that p(x ∣y) ∝ exp{−ϕy(x)} is log-concave, i.e., ϕy convex on Rd .

The Bayesian estimator that minimises the Bregman divergence loss
L(u, x) = Dϕ(u, x) ≜ ϕ(u) − ϕ(x) − ∇ϕ(x)(u − x), is the MAP estimator

x̂L = argmin
u∈Rd

E{L(u,x)∣y} = argmin
u∈Rd

∫ Dϕ(u, x)p(x ∣y)dx

= argmax
x∈Rd

p(x ∣y),

= argmin
x∈Rd

−ϕy(x),

= x̂MAP

(6)

Interestingly, the “dual” estimator is x̂MMSE , i.e.,

x̂L = argmin
u∈Rd

E{L(x ,x)∣y} = argmin
u∈Rd

∫ Dϕ(x ,u))p(x ∣y)dx

= x̂MMSE

(7)

See Pereyra (2019) for proof and details.
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Posterior credible regions

Where does the posterior probability mass of x lie?

A set Cα is a posterior credible region of confidence level (1 − α)% if

P [x ∈ Cα∣y] = 1 − α.

For any α ∈ (0,1) there are infinitely many regions of the parameter space
that verify this property.

The highest posterior density (HPD) region is decision-theoretically
optimal in a compactness sense

C∗α = {x ∶ ϕ(x) ≤ γα}

with γα ∈ R chosen such that ∫C∗α p(x ∣y)dx = 1 − α holds.
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Hypothesis testing

Hypothesis test split the solution space in two meaningful regions, e.g.,

H0 ∶ x ∈ S

H1 ∶ x /∈ S

where S ⊂ Rd contains all solutions with some characteristic of interest.

We can then assess the degree of support for H0 vs. H1 by computing

P(H0∣y) = ∫
S
p(x ∣y)dx , P(H1∣y) = 1 − P(H0∣y) .

We can also reject H0 in favour of H1 with significance α ∈ [0,1] if

P(H0∣y) ≤ α.
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Bayesian model selection

The Bayesian framework provides theory for comparing models objectively.

Given K alternative models {Mj}
K
j=1 with posterior densities

Mj ∶ pj(x ∣y) = pj(y ∣x)pj(x))/pj(y) ,

we compute the (marginal) posterior probability of each model, i.e.,

p(Mj ∣y) ∝ p(y ∣Mj)p(Mj) (8)

where p(y ∣Mj) ≜ pj(y) = ∫ pj(y ∣x)pj(x)dx measures model-fit-to-data.

We then select for our inferences the “best” model, i.e.,

M
∗
= argmax

j∈{1,...,K}
p(Mj ∣y).
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Bayesian model calibration

Alternatively, given a continuous class of models {Mθ, θ ∈ θ} with

Mθ ∶ p(x ∣y , θ) =
p(y ∣x , θ)p(x ∣θ)

p(y ∣θ)
,

we compute the (marginal) posterior

p(θ∣y) = p(y ∣θ)p(θ)/p(y) (9)

where p(y ∣θ) = ∫ p(y ∣x , θ)p(x ∣θ)dx measures model-fit-to-data.

We then calibrate our model with the “best” value of θ, i.e.,

θ̂MAP = argmax
θ∈Θ

p(θ∣y).
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Bayesian model averaging

We can also use all models simultaneously!

Given K alternative models {Mj}
K
j=1 with posterior densities

Mj ∶ pj(x ∣y) = pj(y ∣x)pj(x))/pj(y) ,

we marginalise w.r.t. the model selector j , i.e.,

p(x ∣y) =
K

∑
j=1

p(x ,Mj ∣y) =
K

∑
j=1

p(x ∣y ,Mj)p(Mj ∣y) (10)

where the posterior probabilities p(Mj ∣y) control the relative importance
of each model.
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Bayesian model calibration

Similarly, given a continuous class of models {Mθ, θ ∈ Θ} with

Mθ ∶ p(x ∣y , θ) =
p(y ∣x , θ)p(x ∣θ)

p(y ∣θ)
,

and a prior p(θ), we marginalise θ

p(x ∣y) = ∫
Θ
p(x , θ∣y)dθ,

= ∫
Θ
p(x ∣y , θ)p(θ∣y)dθ

where again p(θ∣y) controls the relative contribution of each model.
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My interpretation of log-concave prior distributions

Log-concave priors regularise the inverse problem by promoting solutions
for which ψ(x) is close to its expectation E(ψ∣θ), controlled by θ ∈ Rp.

Formally, when ψ is convex we have concentration of probability mass on
the typical set (see Bobkov and Madiman (2011))

P{∥ψ(x) −E(ψ∣θ)∥ > η∣θ} < 3 exp{−η2d/16}, ∀η ∈ (0,2) (11)

Moreover, by differentiating Z(θ) and using Leibniz integral rule

E(ψ(x)∣θ) = ∫
Ω
ψ(x)p(x)dx = −∇θ logZ(θ), (12)

hence p(x ∣θ) softly constrains ψ(x) ≈ −∇θ logZ(θ) when d is large.

Z(θ) is strongly log-concave, hence ∇θ logZ(θ) spans Rp (think duality).
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My interpretation of log-concave prior distributions

For example, priors of the form

p(x) ∝ e−θ∥Bx∥† ,

for some basis or dictionary W ∈ Rd×p and norm ∥ ⋅ ∥†, are encoding

E(∥Bx∥†∣θ) =
d

θ
.

See Pereyra et al. (2015); Fernandez-Vidal and Pereyra (2018) for more
details and other examples.
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Summary

The Bayesian statistical paradigm provides a power mathematical
framework to solve imaging problems...

It allows deriving optimal estimators for x ..

As well as quantifying the uncertainty in the solutions delivered...

It supports hypothesis tests to inform decisions and conclusions...

And allows operating with partially unknown models...

And with several competing models...

So the problem is quite solved, right?
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Not really...

How do we compute all these probabilities?
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Inference by Markov chain Monte Carlo integration

Monte Carlo integration
Given a set of samples X1, . . . ,XM distributed according to p(x ∣y), we
approximate posterior expectations and probabilities

1

M

M

∑
m=1

h(Xm) → E{h(x)∣y}, as M →∞

Markov chain Monte Carlo:
Construct a Markov kernel Xm+1∣Xm ∼ K(⋅∣Xm) such that the Markov
chain X1, . . . ,XM has p(x ∣y) as stationary distribution.

MCMC simulation in high-dimensional spaces is very challenging.
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Unadjusted Langevin algorithm

Suppose for now that p(x ∣y) ∈ C1. Then, we can generate samples by
mimicking a Langevin diffusion process that converges to p(x ∣y) as t →∞,

X ∶ dX t = ∇ log p (X t ∣y)dt +
√
2dWt , 0 ≤ t ≤ T , X(0) = x0.

where W is the Brownian motion on Rd .

Because solving X t exactly is generally not possible, we use an Euler
Maruyama approximation and obtain the “unadjusted Langevin algorithm”

ULA ∶ Xm+1 = Xm + δ∇ log p(Xm∣y) +
√
2δZm+1, Zm+1 ∼ N(0, In)

ULA is remarkably efficient when p(x ∣y) is sufficiently regular.

Unfortunately, imaging models often violate these regularity conditions.
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Non-smooth models

Without loss of generality, suppose that

p(x ∣y) ∝ exp{−f (x) − g(x)} (13)

where f (x) and g(x) are l.s.c. convex functions from Rd → (−∞,+∞], f
is Lf -Lipschitz differentiable, and g ∉ C1.

For example,

f (x) = 1
2σ2 ∥y −Ax∥

2
2, g(x) = α∥Bx∥† + 1S(x) ,

for some linear operators A, B, norm ∥ ⋅ ∥†, and convex set S.

Unfortunately, such non-models are beyond the scope of ULA.

Idea: Regularise p(x ∣y) to enable efficient Langevin sampling.
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Approximation of p(x ∣y)

Moreau-Yoshida approximation of p(x ∣y) (Pereyra, 2015):

Let λ > 0. We propose to approximate p(x ∣y) with the density

pλ(x ∣y) =
exp[−f (x) − gλ(x)]

∫Rd exp[−f (x) − gλ(x)]dx
,

where gλ is the Moreau-Yoshida envelope of g given by

gλ(x) = inf
u∈Rd
{g(u) + (2λ)−1∥u − x∥22},

and where λ controls the approximation error involved.
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Moreau-Yoshida approximations

Key properties (Pereyra, 2015; Durmus et al., 2018):

1 ∀λ > 0, pλ defines a proper density of a probability measure on Rd .

2 Convexity and differentiability:

pλ is log-concave on Rd .

pλ ∈ C
1 even if p not differentiable, with

∇ log pλ(x ∣y) = −∇f (x) + {prox
λ
g (x) − x}/λ,

and proxλg (x) = argminu∈RN g(u) + 1
2λ
∣∣u − x ∣∣2.

∇ log pλ is Lipchitz continuous with constant L ≤ Lf + λ
−1.

3 Approximation error between pλ(x ∣y) and p(x ∣y):

limλ→0 ∥pλ − p∥TV = 0.

If g is Lg -Lipchitz, then ∥pλ − p∥TV ≤ λL
2
g .
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Illustration

Examples of Moreau-Yoshida approximations:

p(x) ∝ exp (−∣x ∣) p(x) ∝ exp (−x4) p(x) ∝ 1[−0.5,0.5](x)

Figure: True densities (solid blue) and approximations (dashed red).
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Proximal ULA

We approximate X with the “regularised” auxiliary Langevin diffusion

Xλ
∶ dXλ

t = ∇ log pλ (Xλ
t ∣y)dt +

√
2dWt , 0 ≤ t ≤ T , Xλ

(0) = x0,

which targets pλ(x ∣y). Remark: we can make Xλ arbitrarily close to X .

Finally, an Euler Maruyama discretisation of Xλ leads to the
(Moreau-Yoshida regularised) proximal ULA

MYULA ∶ Xm+1 = (1 −
δ
λ)Xm − δ∇f {Xm} +

δ
λ prox

λ
g{Xm} +

√
2δZm+1,

where we used that ∇gλ(x) = {x − prox
λ
g(x)}/λ.
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Convergence results

Non-asymptotic estimation error bound

Theorem 3.1 (Durmus et al. (2018))

Let δmax
λ = (L1 + 1/λ)

−1. Assume that g is Lipchitz continuous. Then,
there exist δϵ ∈ (0, δ

max
λ ] and Mϵ ∈ N such that ∀δ < δϵ and ∀M ≥Mϵ

∥δx0Q
M
δ − p∥TV < ϵ + λL

2
g ,

where QM
δ is the kernel assoc. with M iterations of MYULA with step δ.

Note 1: δϵ and Mϵ are explicit and tractable. If f + g is strongly convex
outside some ball, then Mϵ scales with order O(d log(d)). See Durmus
et al. (2018) for other convergence results.
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Illustrative example 1

Three toy models:

p(x) ∝ exp (−∣x ∣) p(x) ∝ exp (−x4) p(x) ∝ 1[−0.5,0.5](x)

Figure: True densities (blue) and MC approximations (red histogram).
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Illustrative example 2: radio-interferometric imaging

Astro-imaging experiment with redundant wavelet frame (Cai et al., 2017).

x̂penMLE (y) x̂MMSE = E(x ∣y) credible intervals (scale 10 × 10)

x̂penMLE (y) x̂MMSE = E(x ∣y) credible intervals (scale 10 × 10)

3C2888 and M31 radio galaxies (size 256 × 256 pixels).
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Bayesian Uncertainty quantification

Where does the posterior probability mass of x lie?

A set Cα is a posterior credible region of confidence level (1 − α)% if

P [x ∈ Cα∣y] = 1 − α.

The highest posterior density (HPD) region is decision-theoretically
optimal (Robert, 2001)

C∗α = {x ∶ ϕ(x) ≤ γα}

with γα ∈ R chosen such that ∫C∗α p(x ∣y)dx = 1 − α holds.

Given a set of samples X1, . . . ,XM distributed according to p(x ∣y),
we can estimate γα from (sample) quantiles of ϕ(X1), . . . , ϕ(XM).

Alternatively, we can compute a bound γα ≤ γ̃α(x̂MAP) analytically by
using probability concentration results. See Pereyra (2016).
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Bayesian Uncertainty quantification

Bayesian hypothesis test for specific image structures (e.g., lesions)

H0 ∶ The structure of interest is ABSENT in the true image

H1 ∶ The structure of interest is PRESENT in the true image

The null hypothesis H0 is rejected with significance α if

P(H0∣y) ≤ α.

Theorem (Repetti et al., 2018)
Let S denote the region of Rd associated with H0, containing all images
without the structure of interest. Then

S ∩ Cα = ∅ Ô⇒ P(H0∣y) ≤ α .

If in addition S is convex, then checking S ∩ Cα = ∅ is a convex problem

min
x̄ , x∈Rd

∥x̄ − x∥22 s.t. x̄ ∈ Cα , x ∈ S .
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Uncertainty quantification in MRI imaging

x̂MAP x̄ ∈ C̃0.01 x ∈ S

x̂MAP (zoom) x̄ ∈ C̃0.01 (zoom) x ∈ S (zoom)

MRI experiment: test images x̄ = x, hence we fail to reject H0 and conclude that

there is little evidence to support the observed structure.
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Uncertainty quantification in MRI imaging

x̂MAP x̄ ∈ C0.01 x ∈ S0

x̂MAP (zoom) x̄ ∈ C0.01 (zoom) x ∈ S0 (zoom)

MRI experiment: test images x̄ ≠ x, hence we reject H0 and conclude that there is

significant evidence in favour of the observed structure.
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Uncertainty quantification in radio-interferometric imaging

Quantification of minimum energy of different energy structures, at level
(1 − α) = 0.99, as the number of measurements T = dim(y)/2 increases.

∣y ∣ x̂MAP(T = 200)
ρα, energy ratio preserved at α = 0.01

Figure: Analysis of 3 structures in the W28 supernova RI image.

Note: energy ratio calculated as

ρα =
∥x̄ − x∥2

∥xMAP − x̃MAP∥2

where x̄ , x are computed with α = 0.01, and x̃MAP is a modified version of xMAP

where the structure of interest has been carefully removed from the image.
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Bayesian Model Selection

The Bayesian framework provides theory for comparing models objectively.

Given K alternative models {Mj}
K
j=1 with posterior densities

Mj ∶ pj(x ∣y) = pj(y ∣x)pj(x))/pj(y) ,

we compute the (marginal) posterior probability of each model, i.e.,

p(Mj ∣y) ∝ p(y ∣Mj)p(Mj) (14)

where p(y ∣Mj) ≜ pj(y) = ∫ pj(y ∣x)pj(x)dx measures model-fit-to-data.

We then select for our inferences the “best” model, i.e.,

M
∗
= argmax

j∈{1,...,K}
p(Mj ∣y).

M. Pereyra Bayesian imaging methods 54 / 83



Experiment setup

We degrade the Boat image of size 256 × 256 pixels with a 5 × 5 uniform
blur operator A∗ and Gaussian noise w ∼ N(0, σ2IN) with σ = 0.5.

y = A∗x +w

We consider four alternative models to estimate x , given by

Mj ∶ pj(x ∣y) ∝ exp [−(∥y −Ajx∥
2
/2σ2) − βjϕj(x)] (15)

with fixed hyper-parameters σ and β, and where:

M1: A1 is the correct blur operator and ϕj(x) = TV (x).

M2: A2 is a mildly misspecified blur operator and ϕj(x) = TV (x).

M3: A3 is the correct blur operator and ϕj(x) = ∥Ψx∥1.

M4: A4 is a mildly misspecified blur operator and ϕj(x) = ∥Ψx∥1.

where Ψ is a wavelet frame and TV (x) = ∥∇dx∥1−2 is the total-variation
pseudo-norm. The βj are adjusted automatically (see model calibration).
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Monte Carlo strategy

To perform model selection we use MYULA to approximate the posterior
probabilities p(Mj ∣y) for j = 1,2,3,4 by Monte Carlo integration.

For each model we generate n = 105 samples {X j
k}

n
k=1 ∼ p(x ∣y ,Mj) and

use the truncated harmonic mean estimator

p(y ∣Mj) ≈ (
n

∑
k=1

1S⋆(X
M
k )

p(XM
k , y ∣Mj)

)

−1

vol(S⋆) , j = {1,2,3,4} (16)

where S⋆ is a union of HPDs of p(x ∣y ,Mj), also estimated from {X j
k}

n
k=1.

Computing time approx. 30 minutes per model.

MYULA can also be used within a nested sampling scheme that provides a
faster and more reliable estimation of p(y ∣Mj). See Cai et al. (2022).
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Numerical results

We obtain that p(M1∣y) ≈ 0.68 and p(M3∣y) ≈ 0.27 with the correct blur
are the best models, p(M2∣y) < 0.05 and p(M4∣y) < 0.01 perform poorly.

y

M1

x̂MAP (PSNR 34.1dB)
p(M1∣y) ≈ 0.68

M3

x̂MAP (PSNR 32.9dB)
p(M3∣y) ≈ 0.27

Figure: MAP estimation results for the Boat image deblurring experiment. (Note:
error w.r.t. “exact” probabilities from Px-MALA approx. 0.5%.)
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Numerical results

MYULA and Px-MALA efficiency comparison:

(a) (b)

Figure: (a) Convergence of the chains to the typical set of x ∣y under modelM1,
(b) chain autocorrelation function (ACF).)
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Warning: I rarely use MYULA (or any other ULA)!

ULA samplers are based on a simple Euler-Maruyama approximation of the
Langevin diffusion that behaves similarly to gradient descent optimisation.

These samplers are useful for introducing ideas, however, they have been
superseded by accelerated samplers, see, e.g., Pereyra et al. (2020).
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Problem statement

Consider the class of Bayesian models

p(x ∣y , θ) =
p(y ∣x)p(x ∣θ)

p(y ∣θ)
,

parametrised by a regularisation parameter θ ∈ Θ. For example,

p(x ∣θ) =
1

Z(θ)
exp{−θψ(x)}, p(y ∣x) ∝ exp{−fy(x)} ,

with fy and ψ convex l.s.c. functions, and fy L-Lipschitz differentiable.

We assume that p(x ∣θ) is proper, i.e.,

Z(θ) = ∫
Rd

exp{−θψ(x)}dx < ∞ ,

with Z(θ) unknown and generally intractable.

M. Pereyra Bayesian imaging methods 61 / 83



Maximum-a-posteriori estimation

Recall that when θ is fixed, the posterior p(x ∣y , θ) is log-concave and

x̂MAP = argmin
x∈Rd

fy(x) + θψ(x)

is a convex optimisation problem that can be often solved efficiently.

For example, one can consider the proximal gradient algorithm

xm+1 = proxL
−1

ψ {x
m
+ L−1∇fy(x

m
)}

to iteratively compute x̂MAP .

However, θ is often unknown, significantly complicating the problem.
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Regularisation parameter MLE

We have two option to tackle θ. We first consider an empirical Bayes
approach based on the MLE

θ̂ = argmax
θ∈Θ

p(y ∣θ) ,

= argmax
θ∈Θ

∫
Rd

p(y , x ∣θ)dx ,

which we solve efficiently by using a stochastic gradient algorithm driven
by two proximal MCMC kernels (see Fernandez-Vidal and Pereyra (2018)).

Given θ̂, we then straightforwardly compute

x̂MAP = argmin
x∈Rd

fy(x) + θ̂ψ(x) . (17)
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Projected gradient algorithm

Assume that Θ is convex, and that θ̂ is the only root of ∇θ log p(y ∣θ) in Θ.

Then θ̂ is also the unique solution of the fixed-point equation

θ = PΘ [θ + δ∇θ log p(y ∣θ)] .

where PΘ is the projection operator on Θ and δ > 0.

If ∇ log p(y ∣θ) was tractable, we could compute θ̂ iteratively by using

θ(t+1) = PΘ [θ
(t)
+ δt∇θ log p(y ∣θ

(t)
)] ,

with sequence δt = αt
−β, α > 0, β ∈ [1/2,1].

However, ∇ log p(y ∣θ) is “doubly” intractable...
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Stochastic projected gradient algorithm

To circumvent the intractability of ∇θ log p(y ∣θ) we use Fisher’s identity

∇θ log p(y ∣θ) = Ex∣y ,θ{∇θ log p(x, y ∣θ)} ,

= −E
x∣y ,θ{ψ(x) + ∇θ logZ(θ)} ,

together with the identity

∇θ logZ(θ) = −Ex∣θ{ψ(x)} ,

to obtain ∇θ log p(y ∣θ) = Ex∣θ{ψ(x)} −Ex∣y ,θ{ψ(x)}.

This leads to the equivalent fixed-point equation

θ = PΘ (θ + δEx∣θ{ψ(x)} − δEx∣y ,θ{ψ(x)}) , (18)

which we solve by using a stochastic approximation algorithm.
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SAPG algorithm driven by MCMC kernels

Initialisation x(0),u(0) ∈ Rd , θ(0) ∈ Θ, δt = δ0t
−0.8.

for t = 0 to n

1. MCMC update x(t+1) ∼Mx ∣y ,θ(t)(⋅∣x
(t)) targeting p(x ∣y , θ(t))

2. MCMC update u(t+1) ∼ Kx ∣θ(t)(⋅∣u
(t)) targeting p(x ∣θ(t))

3. Stoch. grad. update

θ(t+1) = PΘ [θ
(t)
+ δtψ(u

(t+1)
) − δtψ(x

(t+1)
)] .

end for

Output The iterates θ(t) → θ̂ as n →∞.
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SAPG algorithm driven MCMC kernels

Initialisation x(0),u(0) ∈ Rd , θ(0) ∈ Θ, δt = δ0t
−0.8, λ = 1/L, γ = 1/4L.

for t = 0 to n

1. Coupled Proximal MCMC updates: generate z(t+1) ∼ N(0, Id)

x(t+1) = (1 −
γ

λ
)x(t) − γ∇fy (x

(t)
) +

γ

λ
proxθλψ (x

(t)
) +
√
2γz(t+1) ,

u(t+1) = (1 −
γ

λ
)u(t) +

γ

λ
proxθλψ (u

(t)
) +
√
2γz(t+1) ,

2. Stochastic gradient update

θ(t+1) = PΘ [θ
(t)
+ δtψ(u

(t+1)
) − δtψ(x

(t+1)
)] .

end for

Output Averaged estimator θ̄ = n−1∑n
t=1 θ

(t+1) converges approx. to θ̂.
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Illustrative example: hyperspectral unmixing

We seek to recover fractional abundances x from the mixed noisy
spectral signatures y measured for every pixel.
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Empirical Bayesian MAP estimation

We consider the prior of Iordache et al. (IEEE TGRS, 2012)

p(x ∣θ) ∝ exp{θTV TV (x) + θL1 ∥x∥1} s.t. x ≥ 0 ,

and use the SAPG scheme to estimate θTV and θL1 by MMLE.

Figure: Evolution of the iterates associated to θTV and θL1.

M. Pereyra Bayesian imaging methods 69 / 83



Empirical Bayesian MAP estimation

Given θ̂TV and θ̂L1, we compute the MAP solution by using the convex
optimisation algorithm SUNSAL:
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Hierarchical Bayesian treatment of unknown θ

Option 2: hierarchical Bayesian inference also allows estimating x without
specifying the value of θ.

We incorporate θ to the model by assigning it an hyper-prior p(θ).

The extended model is

p(x , θ∣y) = p(y ∣x)p(x ∣θ)p(θ)/p(y),

∝
exp{−fy(x) − θψ(x) − log p(θ)}

Z(θ)
,

(19)

but Z(θ) = ∫Rd exp{−θψ(x)}dx is typically intractable!

If we had access to Z(θ) we could either estimate x and θ jointly, or
alternatively marginalise θ followed by MAP inference on x .

M. Pereyra Bayesian imaging methods 71 / 83



Idea: Use MYULA to estimate E [ψ(x)∣θ] over a θ-grid, and then
approximate logZ(θ) by using the identity d

dθ logZ(θ) = E [ψ(x)∣θ].

Figure: Monte Carlo approximations of E [ψ(x)∣θ]/d Vs θ for 4 widely used prior
distributions and for θ ∈ [10−3,102]. Surprise: they all coincide!
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Main theoretical result

Definition[k-homogeneity] The regulariser ψ is a k-homogeneous function
if ∃k ∈ R+ such that

ψ(ηx) = ηkψ(x), ∀x ∈ Rd ,∀η > 0. (20)

Theorem[Pereyra et al. (2015)] Suppose that ψ, the sufficient statistic of
p(x ∣θ), is k-homogenous. Then the normalisation factor has the form

Z(θ) = Z(1)θ−d/k ,

with (generally intractable) constant Z(1) independent of θ.

Note: This result holds for all norms (e.g., ℓ1, ℓ2, total-variation, nuclear,
etc.), composite norms (e.g., ℓ1 − ℓ2), and compositions of norms with
linear operators (e.g., analysis terms of the form ∥Ψx∥1)!
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Marginal maximum-a-posteriori estimation of x

Knowledge of Z(θ) enables (for example) marginal MAP estimation of x

x̂†
MAP = argmax

x∈Rd
∫

∞

0
p(x , θ∣y)dθ,

= argmin
x∈Rd

fy(x) + (d/k + α) log{ψ(x) + β},
(21)

where we have used the hyper-prior θ ∼ Gamma(α,β).

We can compute x̂† efficiently by majorisation-minimisation optimisation

x(t) = argmin
x∈Rd

fy(x) + θ
(t−1)ψ(x),

θ(t) =
d/k + α

ψ(x(t)) + β
.

(22)

which is also an expectation-maximisation algorithm.
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Illustrative example: hyperspectral unmixing

We use the hyperspectral unmixing example to develop an intuition for the
strengths and drawbacks of the EB and HB approaches.

EB performs remarkably well in low SNR (high noise) regimes, close to the
oracle performance. The benefits of HB kick-in in high SNR regimes.
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Illustrative example: image deconvolution with a TV prior

SNR=20dB SNR=30 SNR=40
MSE Time (min) MSE Time (min) MSE Time (min)

Best 23.29 21.39 19.06
Emp. Bayes 23.50 0.86 21.46 0.85 19.24 0.85
Hier. Bayes 25.07 0.58 22.84 1.27 19.84 3.27
Disc. Princp. 23.73 21.87 19.78
SUGAR 24.44 3.92 24.24 4.50 24.21 4.81

Original Degraded x

EB

x

HB x


DP x


SUG

X

X

X

SNR=20
SNR=30
SNR=40

X Min MSE

Empirical B.

Disc. Prin.

Hierarchical B.

SUGAR

10-4 0.001 0.010 0.100 1

θ

20

30

40

50

60

70

MSE(θ)
Image:flinstones
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Denoising with Total Generalized Variation

We consider TGV 2
θ (u) = inf

v∈BD(Ω)
θ1 ∫Ω ∣∇u − v ∣ + θ2 ∫Ω ∣ε(v)∣ with k = 2.

Figure: Goldhill image (Original-Degraded-Estimated MAP), SNR=12dB.
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Denoising with Total Generalized Variation
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Evolution of θ through iterations starting from different initial values:

θinit=10

θinit=0.1

θinit=40
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Concluding remarks

There are three main frameworks to solve imaging inverse problems -
mathematical analysis, Bayesian statistics, and machine learning -
with complementary strengths and drawbacks.

This tutorial focused on Bayesian imaging methods that leverage a
range of ideas and techniques from mathematical analysis to perform
computations efficiently.

We explored integrating modern stochastic and optimisation
approaches to construct proximal MCMC methods and stochastic
proximal gradient algorithms.

The tutorials of tomorrow will focus on methods at that also
incorporate a significant machine learning component.
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